
JutulGPT
Elling Svee (elling.svee@gmail.com)

Summer internship at SINTEF Digital.

August 05, 2025

1. Introduction
1.1. AI agents
An AI agent is an autonomous system that perceives its environment, makes decisions, and
performs tasks to achieve specific goals. These agents are usually powered by large language
models (LLMs) that can understand and generate human language. What sets an AI agent
apart for a standard LLM is their ability to call external functions, often called tools. Tools
such as document search, code execution, or API calls extend the agent’s abilities beyond
simple text generation. This lets them handle more complex tasks, work autonomously, and
adapt to changing needs. The recent surge in popularity of AI agents shows that they can be
a powerfull utility for developers and researchers. However, most agents are used to generate
code for popular, well-documented frameworks and libraries. There is less research on how
agents can work with smaller or more specialized packages, and this is an area that needs
further exploration.

Figure 1: A simple AI agent that uses tools to perform actions and generate output.

1.2. Focus
This work explores and develops AI agents specialized for the JutulDarcy.jl package. This is
a high-performance porous media and reservoir simulator developed by the Applied Compu-
tational Science group at SINTEF Digital. An agent for JutulDarcy can help experts with
programming tasks and guide newcomers in using the package. A well-designed agent can
reduce manual coding effort by streamlining tasks like setting up simulations and retrieving
information from the documentation. Beyond code generation, an agent can also assist with
data analysis, visualization, and experimental design.

SINTEF Digital is not the only organization exploring the potential of AI-driven development.
Another aspect of my work is therefore to evaluate the benefits and disadvantages of devel-
oping custom AI agents for specific packages, instead of relying on pre-made general-purpose
systems like GitHub Copilot or Claude Code . Custom agents can offer local deployment,
better integration, and more control over their behavior. However, maintaining them requires
ongoing effort in terms of updates, monitoring and integration with other systems.

Lastly, building an effective agentic system also means understanding how users interact with
the AI. This involes investigating what they need, how they prefer to work, and what use-

2

https://sintefmath.github.io/JutulDarcy.jl/stable/
https://www.sintef.no/en/digital/departments-new/department-of-mathematics-and-cybernetics/research-group-applied-computational-science/
https://www.sintef.no/en/digital/departments-new/department-of-mathematics-and-cybernetics/research-group-applied-computational-science/
https://github.com/features/copilot
https://www.anthropic.com/claude-code

cases matter most. My work has also focused on seeing how the agent can be implemented
and integrated into existing workflows.

The full implementation of the JutulGPT agents is available on GitHub (see Table 1). It is open
source under the MIT license , allowing free use and modification by SINTEF and the wider
community.

Name Link

JutulGPT https://github.com/ellingsvee/JutulGPT

JutulGPT-GUI https://github.com/ellingsvee/JutulGPT-GUI/

Table 1: JutulGPT code repositories

2. Framework
Although the agents are meant to write and evaluate Julia code, they are implemented in
Python using the LangGraph framework. LangGraph provides a structured way to define
the agent’s behavior, manage state and handle user interactions. It is a popular and well-
documented library for creating production-ready AI applications, and is open source under
the MIT license. Another benefit is that is supports both local and remote LLMs, allowing for
flexibility in deployment. We can therefore use Ollama to run local models, while still being
able to switch to a remote models.

3. Tools
One of the keys to building effective agents is providing a well thought-out set of tools. For
the JutulDarcy agent, the main focus has been on tools for retrieving information from the
JutulDarcy documentation. For some workflows, it is also necessary to include tools for code
evaluation. Inspired by the Cursor and Copilot prompts , the agent was also given extra tools
to make it more autonomous.

3.1. Retrieval
Three retrieval tools are implemented. All are used to gather information based on a query, but
each retrieves different types of content. None of the tools access the JutulDarcy source code,
and instead focus on documentation and examples. Retrieving source code could be useful for
tasks that lack documentation, but was not needed for the current use cases. Currently, the
tools retrieve context from the JutulDarcy documentation. Similar methods could be used for
other packages like Fimbul.jl . Its documentation similarly structured, but less extensive. Yet,
incorporating the package could require adjusting the retrieval approach.

grep_search is the simplest retrieval tool. It performs a keyword search in the JutulDarcy
documentation. By default, it returns up to 20 results, but this can be adjusted. It also supports
regex and filetype filters, though these are rarely used in practice. The tool is useful for both
retrieving file content and getting an overview of which files contain relevant information.
The agent often follows up a search by reading the full content of some of the files found.

3

https://opensource.org/license/mit
https://github.com/ellingsvee/JutulGPT
https://github.com/ellingsvee/JutulGPT-GUI/
https://julialang.org/
https://www.python.org/
https://github.com/langchain-ai/langgraph
https://ollama.com/
https://github.com/x1xhlol/system-prompts-and-models-of-ai-tools
https://github.com/sintefmath/Fimbul.jl

retrieve_function_documentation fetches documentation for specific function names. This is useful
for quickly accessing information about Jutul and JutulDarcy functions without searching the
entire documentation. It uses the @doc macro, so it always provides up-to-date documentation
as long as the latest Jutul and JutulDarcy releases are installed.

retrieve_examples performs a semantic search to find relevant JutulDarcy examples stored in a
vector database. Full examples are embedded, which helps generate code for complete simu-
lations. However, embedding large chunks of text can make results less relevant to specific
queries. An alternative would be to embed smaller chunks or use a more targeted retrieval
approach.

Currently, grep_search and retrieve_examples get their context from a documentation folder
included in the JutulDarcy repository. This is not sustainable, since the folder must be updated
whenever JutulDarcy changes. A better solution would be to retrieve documentation directly
from the package, ensuring the agent always has the latest information and removing the need
for manual updates.

3.2. Code evaluation
Code evaluation can be implemented either as tools that the agent calls dynamically or as
functions that are built directly into the agent’s workflow. In this subsection I describe the
functions themselves, while referring to Section 5 for details on their use.

The run_linter function performs static code analysis to identify potential issues in the gener-
ated code. It checks for common programming mistakes, style violations, and other aspects
that could affect code quality. This function is implemented using the StaticLint.jl package,
which is also used by the Julia extension for Visual Studio Code. While static analysis can
highlight potential problems, it may not detect all errors or suggest solutions. To address this
limitation, the run_julia_code function can be used to execute Julia code and return any errors
that occur during runtime. At present, this function requires the complete code to be provided,
but it could be extended to run only a specific section. This would allow for more efficient
testing and debugging, as the agent would not need to re-run the entire code after each change.

A more experimental option is the execute_terminal_command tool, which can run arbitrary
terminal commands. This can be useful for installing packages, managing files, or running
external programs. However, because it can potentially execute harmful commands, it should
be used with caution. The current implementation does not include automated safety checks,
but it always stops and prompts the user before executing a command. Additional tools could
also be developed to improve code evaluation further. For example, running a predefined set of
tests could help verify correctness and functionality, while dynamic analysis during runtime
could provide information about performance and behavior.

3.3. Environment
For more dynamic and autonomous agents, tools for interacting with the environment can
be valuable. I have implemented functions that read from files (read_from_file), write to files
(write_to_file), list the names of files in a directory (list_files_in_directory), and return the current
working directory (get_working_directory). Although not implemented, another useful capability
would be access to selected git commands. For example, the git diff command could be used

4 TOOLS

https://github.com/julia-vscode/StaticLint.jl
https://github.com/julia-vscode/julia-vscode

to compare the current code with a previous version, allowing the agent to track its own
modifications. This could be especially helpful when generating large amounts of code in one
session.

4. Human in the loop
Providing the model with more tools can lead to more complex behavior. This often results
in the model acting more autonomously, which can be both an advantage and a challenge.
Smaller language models in particular tend to struggle with complex tasks. In my experience,
they sometimes choose the wrong tools, get stuck on minor errors, or generate code that
does not meet the user’s requirements. One way to address these issues is to include human
feedback in the agent’s decision-making process, a method commonly referred to as human-
in-the-loop (HITL). This approach allows users to provide input and corrections, ensuring that
the agent’s actions align with their expertise.

I have implemented HITL-interactions in the workflow and in many of the available tools.
For example, when the agent retrieves information from the JutulDarcy documentation or
examples, the user can review and filter the retrieved content. When the agent generates code
based on user requirements, it presents the code to the user for review before execution. This
gives the user an opportunity to make manual adjustments or suggest improvements.

Because the need for HITL-interactions depends on both the user and the task, I have made
it possible to disable them before initializing the agent. How to do this is explained in the
appendix. Another possible enhancement would be to provide human interaction as a dedi-
cated tool, allowing the agent to request user input dynamically at any point in the workflow.

5. Workflows
Having provided the LLM with tools and implemented HITL-interactions, the agent still rarely
generates correct code on the first try. The best option is therefore to design a workflow,
which is specified through a sequence of actions that the agent should take. This is commonly
visualized through a directed graph, where the nodes represents actions the agent performs,
and the edges represent the flow of information between these actions.

When implementing the agent, I tested several different workflows, each with its own
strengths and weaknesses that i describe in this section. For most tasks I recommend using
the Evaluator-optimizer workflow described in Section 5.3, or the Augmented LLM workflow
described in Section 5.4. Yet, for more specific tasks the others should also be considered.

I recommend reading the Building Effective Agents article by Anthropic for a more in-depth
discussion of the different workflows. It provides valuable insights into how to design and
implement effective agents using LLMs, and gives concrete tips on when to use the different
approaches. The appendix also details how to use tools effectively, and can be worth looking
into.

5.1. Linear
The linear workflow is the simplest option, and works by having the agent follow a fixed
sequence of steps. For setting up a simulation, this sequence typically involves retrieving

5

https://www.anthropic.com/engineering/building-effective-agents

documentation, generating the simulation code, evaluating the code, and finally analyzing the
results of the evaluation. As illustrated in Figure 2, the process returns to the first step if the
code fails, allowing the agent to correct the error.

This approach works reasonably well for most tasks and is a good choice for smaller models.
However, it can be too rigid for tasks that require extensive debugging. It also requires the
workflow designer to think carefully about how information is passed from one step to the
next.

Figure 2: Linear workflow

5.2. Orchestrator-synthesizer
Setting up a simulation in JutulDarcy often involves tasks such as discretizing the domain,
defining the system, and running the simulation. The orchestrator-synthesizer workflow,
illustrated in Figure 3, can be useful for this type of work. In this approach, an orchestrator
divides the overall task into smaller subtasks, separate agents handle each subtask, and a
synthesizer combines the resulting code into a complete solution.

The main advantage of this approach is that assigning smaller subtasks to different agents
prevents overwhelming the language model with too much information at once. This is espe-
cially beneficial for smaller models that may struggle with complex problems. The orchestrator
can also manage dependencies between subtasks, ensuring they are completed in the correct
order and that the output from one step is correctly incorporated into the next.

The main challenge with this workflow lies in the number of decisions the designer must make.
It is necessary to determine whether the retrieved context should be shared between agents or
kept separate, how to manage task dependencies, and how to merge the generated code into a
coherent script. Furthermore, not all tasks can be easily divided into smaller subtasks, making
the workflow unsuitable in some situations. Because of these limitations, I decided not to use
the orchestrator-synthesizer workflow in the final JutulDarcy agent. However, I still consider
it a promising approach that is worth exploring further in the future.

Figure 3: Orchestrator-synthesizer workflow

6 WORKFLOWS

5.3. Evaluator-optimizer
The evaluator-optimizer workflow is simpler than the orchestrator-synthesizer, and uses an
iterative process to generate and refine code. It is similar to the linear workflow, but combines
the retrieval and generation steps into a single step. As shown in Figure 4, the agent first
generates code based on the user’s requirements while retrieving relevant information from
the documentation. It then evaluates the generated code and, if errors are found, passes them
back to the code generator for correction.

When used with sufficiently capable language models, this approach is very effective. Giving
the agent greater flexibility in its use of tools makes it better at fixing errors and responding
to user feedback. In the case of an error, the agent typically retrieves information directly
related to that specific problem, which often leads to faster and more accurate fixes than
when relying solely on context related to the broader task. For these reasons, the evaluator-
optimizer workflow is my preferred choice for the JutulDarcy agent, and is used in one of the
two implemented agents.

Figure 4: Evaluator-optimizer workflow

5.4. Augmented LLM
As the LLMs become more and more capable, we have seen a shift towards a simpler and more
dynamic workflow. For the augmented LLM, the language model is provided with tools and
a set of instructions but is not bound to a fixed sequence of steps. Instead, the model acts as
both the code generator and evaluator, calling tools as needed. This approach, illustrated in
Figure 5, allows the LLM to interact directly with the user, retrieve documentation, generate
code according to user requirements, and evaluate the resulting code.

This workflow requires a carefully designed prompt to guide the model’s behavior, along with
access to a large set of tools. Smaller models often struggle with this approach, but it can be
very effective when using large LLMs. It also provides the most Copilot-like experience, as it
allows the agent to operate autonomously. This type of agent is implemented in JutulGPT, and
can be run as an alternative to the evaluator-optimizer workflow.

For future work, I recommend reviewing the System prompts and models of AI tools repos-
itory for examples of how the augmented LLM workflow is applied in systems such as Cursor
and GitHub Copilot. The repository also contains a comprehensive list of tools that could
serve as inspiration when designing agents.

WORKFLOWS 7

https://github.com/x1xhlol/system-prompts-and-models-of-ai-tools.git

Figure 5: Augmented LLM workflow

6. Interfaces
I have implemented two interfaces for interacting with the agent. The first is a command-line
interface (CLI) that allows interaction through a terminal, while the second is a web-based
graphical user interface (GUI) that offers a more user-friendly experience. For most users, the
most convenient option would likely be a Visual Studio Code extension, as this would allow
them to work with the agent directly from within their code editor. Such an extension would
provide a seamless experience but is not yet implemented and should be considered for future
work.

6.1. CLI
The CLI is the fastest and most flexible way to interact with the agent. Inspired by Claude
Code and Gemini CLI , the agent can be run directly from the terminal. It uses the Python-
based rich library to format and render Markdown in the terminal, making the responses easy
to read and interact with. The CLI can also open a specified text editor for a more seamless
editing experience. It supports streaming output so that users can see responses as they are
generated.

8

https://www.anthropic.com/claude-code
https://www.anthropic.com/claude-code
https://github.com/google-gemini/gemini-cli
https://github.com/Textualize/rich

Figure 6: Example of the CLI for interacting with the JutulGPT agent.

6.2. GUI
The web-based GUI, shown in Figure 7, offers the same features as the CLI but with a ChatGPT-
like interface. The backend is largely the same as the CLI, although separate functions are
required for human interactions. The GUI was built on top of the open-source LangGraph
Agent Chat UI repository, with modifications to support the configuration settings specific
to JutulGPT.

INTERFACES 9

https://github.com/langchain-ai/agent-chat-ui
https://github.com/langchain-ai/agent-chat-ui

Figure 7: Example of the UI for interacting with the JutulGPT agent.

7. Future work
The current implementation of the JutulDarcy agent provides a solid foundation, but there are
several opportunities for improvement and extension.

At present, the agent can set up simulations, but more complex scenarios may require addi-
tional user input or guidance. Future work could focus on improving the agent’s ability to
handle such scenarios more effectively. This could involve expanding the agent’s knowledge
base, enhancing the retrieval tools, and refining the feedback from the code evaluator. It would
also be valuable to explore how the agent should approach code generation for tasks not
covered by existing examples, as some of these cases remain difficult for the agents to handle.

Selecting the most appropriate workflow depends on both the complexity of the task and
the capabilities of the language model. Simpler and more linear workflows tend to work
better for smaller models, while larger models often benefit from a more dynamic setup. The
agents could be improved by more carefully matching models to specific tasks, and designing
specialized workflows for particular model sizes and use cases.

Another important area for improvement is the interaction between Python and Julia. It would
be highly beneficial to keep Julia running continuously in the background, avoiding the need
to restart it each time code is executed. This would also improve iterative coding workflows,
such as those described in Section 5.2 and Section 5.3. For example, rather than rerunning
the full code after each change, it would be possible to run only the modified sections. The
JuliaCall package offers a way to enable more direct interaction between Python and Julia,
although its current limitations in multithreading support make it harder to use alongside
the GUI.

10

https://juliapy.github.io/PythonCall.jl/stable/juliacall/

Finally, the CLI-interface could be improved by allowing users to change settings at runtime.
For instance, users should be able to switch the model or adjust the available tools without
restarting the agent. This would make the system more flexible and adaptable to different
use cases. Currently, the CLI supports changing some settings before initialization, but this
capability has not yet been added to the GUI. The LangGraph RunnableConfig supports this
feature, but it is not yet implemented.

I look forward to seeing how this work develops in the future and hope to continue contribut-
ing to it. For questions or suggestions, please feel free to create an issue on GitHub or contact
me by email. I am also open to collaborating with others who share an interest in this area of
research and development.

FUTURE WORK 11

https://python.langchain.com/api_reference/core/runnables/langchain_core.runnables.config.RunnableConfig.html

Appendix: A very brief overview of the code
The settings for the agent is set in the src/jutuldarcy/configuration.py file. This contains some static
settings, and a BaseConfiguration class of settings that can be configured at runtime. See the
README.md file for specifics. However, some important settings and variables to note are:
• cli_mode : If set to True , the agent will run in CLI mode, while False will run in GUI mode.
• LLM_MODEL_NAME and EMBEDDING_MODEL_NAME : The default model for the LLMs and em-

bedding models. Note that this can be overridden in the BaseConfiguration .
• HumanInteraction : A class that defines how the agent interacts with the user. Here, the different

human-in-the-loop interactions can individually be disabled or enabled.

I have implemented agents for the evaluator-optimizer and the augmented LLM workflows.
The evaluator-optimizer agent is found in src/jutulgpt/agents/agent.py , while the augmented LLM
is found in src/jutulgpt/agents/autonomous_agent.py . Both inherit from form the BaseAgent class in
src/jutulgpt/agents/agent_base.py , which provides most of the core functionality. In the CLI-mode,
the agents can be invoked by calling the associated run() function in BaseAgent , like what is
done in examples/agent.py and examples/autonomous_agent.py . For running in the GUI, we need to
specify the location of the complied workflow-graph in the langgraph.json file. How do to this
should be self explanatory.

The rest of the project should be relatively easy to understand based on their names and
locations. Yet, one thing to note is that now is the full JutulDarcy- and Fimbul-documentation
placed in src/jutulgpt/rag/ . As mentioned previously, this should be moved to a more appropriate
location, and not be a part of the JutulGPT repository. Tests are set up to be implemented
using pytest . However, due to the rapid changes to the project, I have not yet implemented
any tests. They can be places in the tests/ folder, and can be run using uv run pytest .

12

	Introduction
	AI agents
	Focus

	Framework
	Tools
	Retrieval
	Code evaluation
	Environment

	Human in the loop
	Workflows
	Linear
	Orchestrator-synthesizer
	Evaluator-optimizer
	Augmented LLM

	Interfaces
	CLI
	GUI

	Future work
	Appendix: A very brief overview of the code

